2,568 research outputs found

    Pathological or physiological erosion—is there a relationship to age?

    Get PDF
    This conventional literature review discusses whether pathological tooth wear is age dependant. It briefly reviews the components of tooth wear and the prevalence of tooth wear in children, adolescents and adults. The emphasis on terminology relating to tooth wear varies. In some countries, the role of erosion is considered the most important, whereas others consider the process to be a combination of erosion, attrition and abrasion often with one being more dominant. The importance of tooth wear or erosion indices in the assessment and the evidence for progression within subject and within lesions is described. The data from the few studies reporting pathological levels of wear reported in children and adults are discussed, in particular its relationship with age. There is little evidence to support the concept that pathological levels of erosion or wear are age dependant. There is, however, some evidence to suggest that normal levels of erosion or wear are age dependant

    Boson Sampling Private-Key Quantum Cryptography

    Full text link
    We introduce a quantum private-key encryption protocol based on multi-photon interference in linear optics networks. The scheme builds upon Boson Sampling, and we show that it is hard to break, even for a quantum computer. We present an information-theoretic proof of the security of our protocol against an eavesdropper with unlimited (quantum) computational power but time-limited quantum storage. This protocol is shown to be optimal in the sense that it asymptotically encrypts all the information that passes through the interferometer using an exponentially smaller private key. This is the first practical application of Boson Sampling in quantum communication. Our scheme requires only moderate photon numbers and is experimentally feasible with current technology

    Efficient recycling strategies for preparing large Fock states from single-photon sources: Applications to quantum metrology

    Full text link
    © 2016 American Physical Society. Fock states are a fundamental resource for many quantum technologies such as quantum metrology. While much progress has been made in single-photon source technologies, preparing Fock states with a large photon number remains challenging. We present and analyze a bootstrapped approach for nondeterministically preparing large photon-number Fock states by iteratively fusing smaller Fock states on a beamsplitter. We show that by employing state recycling we are able to exponentially improve the preparation rate over conventional schemes, allowing the efficient preparation of large Fock states. The scheme requires single-photon sources, beamsplitters, number-resolved photodetectors, fast-feedforward, and an optical quantum memory

    Entanglement-free Heisenberg-limited phase estimation

    Get PDF
    Measurement underpins all quantitative science. A key example is the measurement of optical phase, used in length metrology and many other applications. Advances in precision measurement have consistently led to important scientific discoveries. At the fundamental level, measurement precision is limited by the number N of quantum resources (such as photons) that are used. Standard measurement schemes, using each resource independently, lead to a phase uncertainty that scales as 1/sqrt(N) - known as the standard quantum limit. However, it has long been conjectured that it should be possible to achieve a precision limited only by the Heisenberg uncertainty principle, dramatically improving the scaling to 1/N. It is commonly thought that achieving this improvement requires the use of exotic quantum entangled states, such as the NOON state. These states are extremely difficult to generate. Measurement schemes with counted photons or ions have been performed with N <= 6, but few have surpassed the standard quantum limit and none have shown Heisenberg-limited scaling. Here we demonstrate experimentally a Heisenberg-limited phase estimation procedure. We replace entangled input states with multiple applications of the phase shift on unentangled single-photon states. We generalize Kitaev's phase estimation algorithm using adaptive measurement theory to achieve a standard deviation scaling at the Heisenberg limit. For the largest number of resources used (N = 378), we estimate an unknown phase with a variance more than 10 dB below the standard quantum limit; achieving this variance would require more than 4,000 resources using standard interferometry. Our results represent a drastic reduction in the complexity of achieving quantum-enhanced measurement precision.Comment: Published in Nature. This is the final versio

    Heralded Noiseless Amplification of a Photon Polarization Qubit

    Full text link
    Non-deterministic noiseless amplification of a single mode can circumvent the unique challenges to amplifying a quantum signal, such as the no-cloning theorem, and the minimum noise cost for deterministic quantum state amplification. However, existing devices are not suitable for amplifying the fundamental optical quantum information carrier, a qubit coherently encoded across two optical modes. Here, we construct a coherent two-mode amplifier, to demonstrate the first heralded noiseless linear amplification of a qubit encoded in the polarization state of a single photon. In doing so, we increase the transmission fidelity of a realistic qubit channel by up to a factor of five. Qubit amplifiers promise to extend the range of secure quantum communication and other quantum information science and technology protocols.Comment: 6 pages, 3 figure

    Ab-initio Quantum Enhanced Optical Phase Estimation Using Real-time Feedback Control

    Full text link
    Optical phase estimation is a vital measurement primitive that is used to perform accurate measurements of various physical quantities like length, velocity and displacements. The precision of such measurements can be largely enhanced by the use of entangled or squeezed states of light as demonstrated in a variety of different optical systems. Most of these accounts however deal with the measurement of a very small shift of an already known phase, which is in stark contrast to ab-initio phase estimation where the initial phase is unknown. Here we report on the realization of a quantum enhanced and fully deterministic phase estimation protocol based on real-time feedback control. Using robust squeezed states of light combined with a real-time Bayesian estimation feedback algorithm, we demonstrate deterministic phase estimation with a precision beyond the quantum shot noise limit. The demonstrated protocol opens up new opportunities for quantum microscopy, quantum metrology and quantum information processing.Comment: 5 figure

    General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology

    Full text link
    The estimation of parameters characterizing dynamical processes is central to science and technology. The estimation error changes with the number N of resources employed in the experiment (which could quantify, for instance, the number of probes or the probing energy). Typically, it scales as 1/N^(1/2). Quantum strategies may improve the precision, for noiseless processes, by an extra factor 1/N^(1/2). For noisy processes, it is not known in general if and when this improvement can be achieved. Here we propose a general framework for obtaining attainable and useful lower bounds for the ultimate limit of precision in noisy systems. We apply this bound to lossy optical interferometry and atomic spectroscopy in the presence of dephasing, showing that it captures the main features of the transition from the 1/N to the 1/N^(1/2) behaviour as N increases, independently of the initial state of the probes, and even with use of adaptive feedback.Comment: Published in Nature Physics. This is the revised submitted version. The supplementary material can be found at http://www.nature.com/nphys/journal/v7/n5/extref/nphys1958-s1.pd

    Improved techniques for preparing eigenstates of fermionic Hamiltonians

    Full text link
    Modeling low energy eigenstates of fermionic systems can provide insight into chemical reactions and material properties and is one of the most anticipated applications of quantum computing. We present three techniques for reducing the cost of preparing fermionic Hamiltonian eigenstates using phase estimation. First, we report a polylogarithmic-depth quantum algorithm for antisymmetrizing the initial states required for simulation of fermions in first quantization. This is an exponential improvement over the previous state-of-the-art. Next, we show how to reduce the overhead due to repeated state preparation in phase estimation when the goal is to prepare the ground state to high precision and one has knowledge of an upper bound on the ground state energy that is less than the excited state energy (often the case in quantum chemistry). Finally, we explain how one can perform the time evolution necessary for the phase estimation based preparation of Hamiltonian eigenstates with exactly zero error by using the recently introduced qubitization procedure
    • …
    corecore